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Official  OECD  recommendations  give  the  highest  priority  to application  of  purely  empirical  phys/chem
data  (partition  coefficients,  environmental  half-live  times  etc.)  in multimedia  mass  balance  modeling  of
environmental  overall  persistence  and  long-range  transport  for  potentially  hazardous  chemicals.  We  have
demonstrated  that  the  replacement  of  the  empirical  data  with  those  predicted  by  employing  Quantita-
tive Structure–Property  Relationships  (QSPR)  technique  did  not  significantly  decrease  the performance
of  The Tool  2.0  – the  OECD  multimedia  mass  balance  model.  To  prove  this,  we  compared  each  other
the  output  results  (overall  persistence  – POV; characteristic  traveling  distance  – CTD  and  transport  effi-
ciency  TE)  obtained  from  6 of  multimedia  models.  The  models  utilized  combinations  of  experimentally
determined  and  QSPR-predicted  values  of  the  partition  coefficients  and  half-live  times.  For  predicting
phys/chem  data,  we utilized  2  QSPRs  developed  in our  laboratory  and  the  EPI  Suite  package  (US  EPA).
ong range transport potential
verall persistence

We  did  not  observe  any  statistically  significant  (p  <  0.05)  differences  between  the  models.  This  conclu-
sion  is important,  because  it  leads  to reducing  time  and  costs  of  laboratory  studies  required  during
the  risk  assessment  procedure.  Moreover,  regarding  the  obtained  results,  we proposed  to  replace  the
single-threshold  approaches  established  by  majority  of  international  regulations  to  screen  substances
for  persistence,  bioaccumulation  and  long-range  transport  potential  with  the  approaches  taking  into
account  uncertainty  of  the  results  and/or  probability  of  passing  a  given  threshold.
. Introduction

Multimedia mass balance (MM)  models play an important role
n the exposure assessment for variety of environmental pollutants.
mong others, the Eulerian, so-called ‘box’ models, in which the
nvironment is segmented into a number of spatially homogeneous
oxes, representing particular environmental components (e.g., air,
ater, soil etc.), are of special meaning. They can be employed to

stimate the long-range transport potential (LRTP) and the overall
ersistence (POV) of a chemical in relation to its intrinsic properties
1,2].

Multimedia models have been widely used for characterizing
ainly hydrophobic Persistent Organic Pollutants (POPs). Members

f the POPs family (i.e., polychlorinated biphenyls, polychlorinated

aphthalenes, polychlorinated dibenzo-p-dioxins, pesticides etc.)
haracterize by high environmental persistence, lipophilicity and,
n effect, high bioaccumulation potential, which – in combination

ith confirmed toxicity – makes them hazardous for human and the

∗ Corresponding author. Tel.: +48 58 523 5451; fax: +48 58 523 5472.
E-mail address: t.puzyn@qsar.eu.org

304-3894/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2011.05.078
© 2011 Elsevier B.V. All rights reserved.

environment [3].  POPs became also ‘model compounds’ for creating
a PBT category of chemicals (P: persistent, B: bioaccumulative, T:
toxic) established in many international regulations, including the
European REACH system [4,5].

For a given chemical the MM models require a set of parameters
that characterize its chemical nature. Typically, for hydropho-
bic POPs, they are: n-octanol/water partition coefficient (KOW),
n-octanol/air partition coefficient (KOA), air/water partition coeffi-
cient (KAW) and measures of the persistence in particular media,
such as half-lives (t1/2) or degradation rate constants (k) in air,
water, soil and/or sediments [6].  These input data are usually
determined empirically and many of them are available in vari-
ous databases, for instance in the excellent handbook published by
Mackay et al. [7].

However, the number of novel chemicals (potential envi-
ronmental pollutants) is rapidly increasing and records of the
databases are becoming limited. Thus, modelers are forced to
calculate (interpolate) the parameters and use them instead of
the empirical ones. Among a vast range of theoretical methods
for predicting the parameters, one has found the largest num-

ber of applications: Quantitative Structure–Property Relationships
(QSPR) technique. The QSPR approach is based on mathemati-
cal dependencies between the variance in molecular structures,
encoded by so-called molecular descriptors (e.g., number of atoms,

dx.doi.org/10.1016/j.jhazmat.2011.05.078
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:t.puzyn@qsar.eu.org
dx.doi.org/10.1016/j.jhazmat.2011.05.078
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Table 1
Description of the multimedia models compared within the study.

Model Origin of the partition
coefficients

Origin of the persistence data

I Experimental Experimental
II Predicted with L-QSPR models Experimental
III Predicted with EPI-Suite Experimental
IV Experimental Predicted with PCA-kNN QSPR model
V  Predicted with L-QSPR models Predicted with PCA-kNN QSPR model
T. Puzyn / Journal of Hazardo

ipole moment etc.), and the variance in a given physicochemi-
al property (e.g., log KOA) within a set of similar compounds. Thus,
henever data are available only for a part of this group, one is able

o interpolate the lacking data from the molecular descriptors and
 suitable mathematical model [8]. The examples of QSPRs capa-
le to predict the properties of interest are fragment-based models

mplemented in the EPI Suite package designed by the US Envi-
onmental Protection Agency [9] and many models published by
ndividual authors, for example [10–13].

There is an important question, how the origin of the physic-
chemical properties influences the results of multimedia mass
alance modeling? According to the official recommendations by
ECD [14,15],  the empirical data should be utilized always when
ossible. But, on the other hand, if the replacement of the empirical
ata with the QSPR-calculated ones does not significantly decrease
he performance of multimedia models, why not to reduce time
nd cost of laboratory studies? This contribution was aimed to give
nswers on these two practical questions.

. Materials and methods

.1. Multimedia model

In this investigation, we employed The OECD POV and LRTP
creening Tool, ver. 2.2 (short: The Tool) – the software officially
ecommended by OECD and publicly available on the web-
ite: http://www.oecd.org/document/17/0,3343,en 2649 34373
0754961 1 1 1 1,00.html.  The Tool software includes a fugacity-
ased steady-state multimedia mass balance model, in which the
nvironment is represented by three bulk compartments: soil
urface layer, seawater surface layer, and troposphere.

The model requires partition coefficients and persistence data
in terms of half-lives) as inputs. The outputs from the model are:
verall persistence and two measures of LRTP: characteristic travel
istance and transfer efficiency. Overall persistence (POV, in days)

s a measure of the chemical’s degradation time in the whole envi-
onment. It is calculated according to the formula (1):

OV = MTOT

FDEG,A + FDEG,W + FDEG,S
(1)

here MTOT is the total mass at steady-state (kg) and FDEG,A, FDEG,W
nd FDEG,S are degradation mass fluxes (in kg/h) in air (A), water (W)
nd soil (S), respectively. Characteristic travel distance (CTD, in km)
s a transport-oriented LRTP indicator that quantifies the distance
rom the point of release to the point at which the concentration
ecreases to 1/e  (about 37%) of its initial value. It is calculated as
2):

TD = MTOT

FE
× Mi

MTOT
× v (2)

here FE is the emission mass flux, Mi/MTOT is the (dimension-
ess) mass fraction in the mobile medium (the same as the medium
hat receives the emissions), and v (km/h) is the transport veloc-
ty. Transfer efficiency (TE, in percents) is a target-oriented LRTP

easure that describes the percentage of the emitted amount of
he substance capable to reach a give target (other part of the envi-
onment, when we divide the whole model environment into two
ymmetrical parts and assume that the substance was released in
he first part). The value of TE is calculated according to Eq. (3):

E = F ′
D

FE
× 100% = FD × FA

F2
E

× 100% (3)
here FA is the advective long-range transport flux and FD and F’D
re deposition fluxes in the first part (the part of emission) and the
econd part (the target) of the model environment. More detailed
escription of the model can be found either in the manual or in
VI Predicted with EPI-Suite Predicted with PCA-kNN QSPR model

the contribution currently published by the authors of the model
[16].

2.2. Comparison scheme

The main idea of the present study was  to compare the out-
put results (POV, CTD and TE) obtained from a series of multimedia
models (The Tool software) that based of combinations of exper-
imentally determined and QSPR-predicted values of the partition
coefficients and the half-live times (Table 1). We  tried to verify, if
there were any significant differences between the model utiliz-
ing experimental data as inputs and the models that utilized the
computationally predicted properties instated. Since the model I
(Table 1) was  based only on the experimental input data, we treated
that as a reference model, and systematically compared the output
from I with the outputs calculated for the rest of models (II–VI).
The pairwise comparisons were performed with standard statisti-
cal procedures, including pairwise Student’s t-test, and the analysis
of rank correlations based on �-Spearman’s and �-Kendall’s corre-
lation coefficients. The comparisons performed within the present
study were based on data for the family of POPs.

2.3. Experimental data

Experimental values of the partition coefficients utilized to
develop multimedia models nos. I and IV were collected from the
Mackay’s handbook [7] and also from five peer-reviewed papers
[17–21]. For details, please refer to the electronic supplementary
data file (SD). Experimental data on persistence in air, water and
soil (used in models nos. I–III) were taken from the handbook [7].
Note that the real half-live value for a compound depends not only
on its intrinsic properties, but also on the environmental condi-
tions. Since the conditions (sunlight intensity, microbial population
etc.) are different in different regions of the earth, it is impossible
and misleading to document a concrete, reliable half-live value, for
instance, in water. Instead of measuring a single t1/2 value, Mackay
et al. [7] proposed to divide the compounds into semi-quantitative
classes by giving only a range of the particular half-live (t1/2 in air,
water, soil and sediment) for each class. For the purpose of mul-
timedia modeling, the mean value calculated from the minimum
and maximum t1/2 in a particular class can be used, because this is
the most probable value when assuming the normal distribution of
the data.

2.4. L-QSPR models

Two linear QSPR (L-QSPR) models were adapted from our pre-
vious contribution [13]. The adapted models (Eqs. (4) and (5))
predicted the values of log KOW and log KOA for 1436 chloro- and

bromo-analogues of various POPs, including: dibenzo-p-dioxins,
dibenzofurans, biphenyls, naphthalenes, diphenyl ethers and ben-
zenes. They utilized four molecular descriptors (�: dipole moment,
SAS: solvent accessible surface area, εHOMO: energy of the highest

http://www.oecd.org/document/17/0,3343,en_2649_34373_40754961_1_1_1_1,00.html
http://www.oecd.org/document/17/0,3343,en_2649_34373_40754961_1_1_1_1,00.html
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Table 2
Comparison of the experimentally determined (Exp) with calculated (L-QSPR and
EPI Suite) values of the partition coefficients by pairwise Student’s t-test (  ̨ = 0.050).

Exp. vs. L-QSPR Exp. vs. EPI Suite

log KOW

d̄ = 0.24 d̄ = −0.30
t = 1.939 t = 1.690
p = 0.078 p = 0.119

log KOA

d̄ = −0.06 d̄ = 0.15
t  = 0.676 t = 0.807
72 T. Puzyn / Journal of Hazardo

ccupied molecular orbital, and ˛: average polarizability) calcu-
ated at the semi-empirical level of the quantum-mechanical theory

ith very accurate PM6 method [22]:

og KOW = −0.3587 − 0.1220� + 0.0247SAS (4)

og KOA = 7.3108 + 0.7408εHOMO + 0.2862˛ (5)

The third partition coefficient (log KAW) was calculated as a dif-
erence between the logarithmic values of KOW and KOA. In the same
revious work [13], by employing hierarchical clustering method,
e identified five classes of similar partitioning in the environment.

n the present study, the predicted values of log KOW and log KAW
ere used as inputs for the multimedia models nos. II and V, and

he 5 partitioning classes – to select representative compounds for
he multimedia models’ comparison.

.5. PCA-kNN model

Multimedia models IV–VI utilized persistence data originated
rom the other preceding work [11]. QSPR models developed in [11]
ith k-Nearest Neighbors classifier combined with Principal Com-
onent Analysis (PCA-kNN) delivered data on the half-live times
t1/2) of brominated and chlorinated POPs in air, water, soil and
ediments. PCA-kNN classifications were based on 24 molecular
escriptors of two types: constitutional and quantum-mechanical
nes (from semi-empirical PM6  method). The persistence data
ere expressed in a semi-quantitative mode, similar to these orig-

nally developed by Mackay et al. (see Section 2.3). Note that in
he present study, we took the average value calculated from the

inimal and maximal t1/2 in each class to have a single t1/2 value
equired for multimedia modeling with The Tool software.

.6. EPI Suite software package

Multimedia models III and VI based on the partition coefficients
alculated with the EPI Suite package. The package designed by the
S EPA is publicly available free of charge on the agency’s website
nd its detailed description can be found elsewhere [9].

.7. Selection of the representative test compounds for comparing
he performance of the studied multimedia models

For making the comparisons of multimedia models within this
tudy more reliable, we  choose a set of test compounds hav-
ng various partitioning characteristics (log KOW and log KOA). The
election procedure was as follows. At first, we extracted only those
ompounds, for which the experimental values of both partition
oefficients have been available. Then, by applying the fast ver-
ion of the Kennard–Stone algorithm [23], we tried to select three
epresentative compounds from each of the partitioning classes,
redefined in [13]. The Kennard–Stone algorithm is designed to
elect the specified number of the most dissimilar (based on the
alues of the partition coefficients in this case) compounds. In
ffect, the selected compounds were evenly distributed in the space
efined by the partition coefficients.

. Results

.1. Representative test compounds

Initially, we selected 42 compounds, for which the experi-
entally measured values of both log KOW and log KOA have been
vailable (for details please refer to SD). Since we have not found
uch data for the class containing the least mobile substances
according to the classification from [13]), we decided to omit that
lass in our current research. Then, by applying the Kennard–Stone
p = 0.513 p = 0.437

d̄ = average residual value.

algorithm, we selected three representative compounds per each
of the four remaining partitioning classes (predefined in [13]). In
effect, the finally selected set of test compounds was evenly dis-
tributed in the space of the partition coefficients (Fig. 1). We  utilized
these test compounds for comparing the performance of the stud-
ied multimedia models.

3.2. Partitioning data

At first, we compared the values of partition coefficients deter-
mined empirically with those predicted by employing the L-QSPR
and EPI Suite models (Table 2). The L-QSPR model usually under-
estimated the values of log KOW (the average residual d̄ > 0),
whereas it overestimated the values of log KOA (the average resid-
ual d̄ < 0). Interestingly, EPI Suite predictions, in most cases, were
characterized by the opposite trend: overestimated log KOW and
underestimated log KOA. Nevertheless, the observed differences
were not statistically significant (p > 0.050).

Logarithmic values of the third partition coefficient (log KAW)
were calculated as follows:

log KAW = log KOW − log KOA (6)

One can ask, if there is any important difference in the values
of log KAW calculated this way  and the values measured/modeled
directly. Theoretically, there should be, regarding that uncertain-
ties of log KOW and log KOA measuring/modeling are propagated
on the calculated log KAW. However, when compared the calcu-
lated log KAW values to the values measured empirically (Table 3),
and when performed paired Student’s t-test, we  found those dif-
ferences insignificant (t = 0.842, p = 0.42). Note that, regarding the
lack of directly measured values of log KAW in the literature, the
comparison was performed based on nine compounds only. Also
interestingly, dissimilarity between the measured and calculated
value for the last compound (octachloronaphthalene) was  very
high – equal to 3.71. This can be explained by the existence of
two extremely different, but both empirically measured, values of
log KOA. The first one (log KOW = 6.42) is recommended by Opper-
huizen et al. [17]. This value has been utilized in our study, since it
correlates better with the values for other, less chlorinated naph-
thalene congeners. The second one (log KOW = 8.50), provided by Lei
et al. [24], fits better to the empirically determined value of log KAW
given in Table 3.

The lowest and the highest values of log KAW calculated from
L-QSPR-predicted log KOW and log KOA (Table 3) were underesti-
mated, whereas the log KAW values for the rest of compounds were
slightly overestimated. However, both the average residual value
and the variance were relatively low. On the contrary, the residuals

variance of log KAW obtained from log KOW and log KOA previously
predicted with EPI Suite was ten times higher; the residuals var-
ied from −3.72 to 0.69. By applying ANOVA we confirmed that
the residuals characterizing both methods of log KAW calculation
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ig. 1. Distribution of the representative compounds in the space of the partitio
xperimental partitioning data are available (experimental persistence data are un

based on QSPR and based on EPI Suite predictions) differed signif-
cantly (F = 5.387, p = 0.030).

The observations above suggest that L-QSPR and EPI Suite
rovide partitioning data of different internal consistency. The
roblem of lacking consistency in partitioning data, i.e., (7):

og KAW − log KOW + log KOA /= 0 (7)

as been discussed in details by many authors [25,26].  Recently,
chenker et al. [26] proposed a least squares adjustment procedure
or harmonizing physicochemical properties of organic chemicals.

e employed this procedure to verify internal consistence of L-
SPR and EPI-Suite predicted data. For this exercise, we  took
artition coefficients (log KOW and log KOA) previously predicted
ith L-QSPR and EPI Suite and log KAW calculated from empiri-

ally measured log KOW and log KOA. Then, from calculating the
nal adjusted values (FAVs) according to the least square proce-
ure and comparing them with the original ones, we were able to
ake conclusions about the consistency of both data sets. Major-

ty of data from L-QSPR required the adjustment of the moderate

evel (Fig. 2a) – similar to that reported in the original work by
chenker et al. [26] for PCBs. Only in case of octachloronaphtha-
ene, the adjustment was higher than 90%, and this was related
o the problem discussed above (very different values of exper-

able 3
omparison of the experimental and calculated values of log KAW.

Compound Experimental 

Meas. Calc. 

Benzene −0.64 −0.67 

1,2,4-Trichlorobenzene −1.24  −0.91 

1,2,3,4,5,6-Hexachlorobenzene −1.16 −1.04 

2,2′ ,5-Trichlorobiphenyl −1.99 −2.00 

2,3,3′ ,4′ ,6-Pentachlorobiphenyl n/a −2.76 

1,2,3,4,7-Pentachlorodibenzo-p-dioxin −3.98 −3.27 

1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin −3.79 −3.31 

1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin −2.15 −3.42 

Naphthalene −1.75 −1.86 

1,5-Dichloronaphthalene n/a −1.95 

1,4,6,7-Tetrachloronaphthalene n/a −2.32 

Octachloronaphthalene −1.35 −5.06 

d̄
s2

eas.: measured directly, Calc.: calculated according to Eq. (6) based on the empirically m
n  the values of log KOW and log KOA predicted with an appropriate model, Res.: residual v
fficients Empty squares (�) indicate representative compounds, for which only
ble).

imentally measured log KOW recommended by two  authors). In
contrast, data predicted with EPI Suite (Fig. 2b) were very consis-
tent for majority of compounds (the adjustment of less than 20%).
However, the adjustments required for three chemicals (including
octachloronaphthalene) were extremely high (between 132% and
1223%). Thus, the predictions from statistically based L-QSPR mod-
els led to slightly higher, but more systematic, inconsistence of the
data set, whereas the predictions from the fragment-based method
implemented in EPI Suite, for some compounds gave almost perfect
consistence of the data set, but data for others were highly incon-
sistent. This means, from practical viewpoint, that the EPI Suite
data for a series of compounds, when not adjusted, would influence
multimedia modeling results much stronger then not adjusted data
from L-QSPR.

3.3. Persistence data

Similarly to the previous step, we compared experimentally
determined data on persistence (expressed in terms of t1/2) in air,

water, soil and sediments with data estimated by employing PCA-
kNN QSPR model. Note, for 5 compounds (indicated with empty
squares on Fig. 1), there were no experimental data on persistence
(t1/2) available. In consequence, these cases had to be excluded

L-QSPR EPI-Suite

Pred. Res. Pred. Res.

−0.47 −0.20 −0.78 0.11
−1.16 0.25 −1.60 0.69
−1.74 0.70 −1.03 −0.01
−2.62 0.62 −1.85 −0.15
−3.21 0.45 −1.66 −1.10
−3.82 0.55 −3.82 0.55
−3.94 0.63 −3.38 0.07
−4.25 0.83 −1.50 −1.92
−1.89 0.03 −1.88 0.02
−2.17 0.22 1.77 −3.72
−2.75 0.43 −2.25 −0.07
−4.19 −0.87 −1.70 −3.36

0.30 −0.74
0.20 2.02

easured values of log KOW and log KOA, Pred.: calculated according to Eq. (6) based
alues, and n/a: data not available.
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in the ranks (for details please refer to SD). Thus, making such
strong recommendations without performing a more comprehen-
sive study might be unjustified.
Fig. 2. Least square adjustment

rom the comparison. When applied pairwise Student’s t-test
or the remaining compounds, we did not notice any significant
p < 0.050) differences between both origins of data. Appropriate
tatistics were as follows: d̄ = 389, t = 0.953 and p = 0.377 for t1/2

n air, d̄ = 703, t = 0.520 and p = 0.622 for t1/2 in water, d̄ = 5426,
 = 0.999 and p = 0.356 for t1/2 in soil, and d̄ = 5429, t = 0.997 and

 = 0.357 for t1/2 in sediments.

.4. Multimedia mass-balance models

Finally, we investigated how the replacement of empirically
etermined properties with the properties estimated by means of
SPR techniques could influence the results of multimedia mass
alance modeling. Since, as mentioned, we had no experimental
ata on the persistence of 5 compounds, it was impossible to cal-
ulate the output values (POV, CTD and TE) from the multimedia
odels I–III for these cases.
We  noticed that rank correlations between the outputs from

articular multimedia models based on the predicted data (models
I–VI) and the outputs from the model utilizing only the experi-

ental properties (model I) were significant in all cases (Fig. 3).
owever, evidently lower correlation coefficients for POV in pairs:

–IV, I–V, and I–VI suggest strong influence of the origin of the per-
istence data used in modeling (experimental or predicted with
CA-kNN QSPR model) on the overall persistence determined by
he multimedia model. Indeed, when The Tool utilized the experi-
entally determined persistence data (models II and III),  the rank
orrelation with model I was almost perfect. On the contrary, the
rigin of the partition coefficients did not influence the output from
he Tool. Neither POV nor both LRTP measures (CTD and TE) differed
SPR (a) and EPI Suite (b) data.

between the models based on the empirical and QSPR-predicted
partitioning data. Although one can conclude that the use of L-
QSPR-based partition coefficients led to better predictions of CTD
and, simultaneously, the data from EPI Suite reproduced better TE,
one should remember that the observed slight differences in the
values of � and � resulted from only single compounds differing
Fig. 3. Rank correlations between the outputs from multimedia models based on
the  predicted phys/chem. data (II–VI) and the outputs from the model utilizing only
the  experimental properties (I).
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Table 4
Comparison of POV, CTD and TE in pairs of the models by pairwise Student’s t-test (  ̨ = 0.050).

I–II I–III I–IV I–V I–VI

POV

d̄ = −23 d̄ = 16 d̄ = −314 d̄ = −348 d̄ = −297
t  = 0.4198 t = 0.3842 t = 0.9826 t = 1.1028 t = 0.9189
p  = 0.6893 p = 0.7140 p = 0.3638 p = 0.3124 p = 0.3936
CTD
d̄ =  13, 770 d̄ = −1538 d̄ = 1936 d̄ = 12, 211 d̄ = 404
t  = 1.0861 t = 1.1614 t = 0.8391 t = 1.0710 t = 0.1332
p  = 0.3191 p = 0.2896 p = 0.4336 p = 0.3254 p = 0.8984
TE
d̄ =  −49.14 d̄ = 16.57 d̄ = 12.48 d̄ = −69.22 d̄ = 28.95
t  = 0.9990 t = 1.0828 t = 1.0063 t = 0.9900 t = 1.5184
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p  = 0.3564 p = 0.3205 p =

¯ = average residual value.

In addition to the rank analysis, we have compared the par-
icular values of POV, CTD and TE in pairs of the models (I–II,
–III, I–IV etc.). Interestingly, we did not notice statistically sig-
ificant (p < 0.05) differences based on pairwise Student’s t-test
Table 4). The observation leads to the conclusion that differences
etween the multimedia modeling results based on the experi-
entally derived and QSPR-predicted phys/chem data, although

tatistically insignificant, could influence the order of compounds
n the ranking. Thus, in general, ranking-based methods in such
xercises are much more sensitive measures than the conventional,
arametric statistics.

. Discussion

A year ago Wittekindt and Goss [27] initiated an interesting
iscussion on quality of partitioning data derived from various
vailable software packages and their impact on the results of
igh throughput screening for persistent (P), bioaccumulative (B)
nd toxic (T) chemicals. The authors compared each other the val-
es of log KOW and log KAW predicted for 8560 compounds with
oth EPI Suite and COSMOtherm computer programs. COSMOtherm

s quantum-chemistry-based software, successfully employed for
alculating equilibrium partitioning and solving various environ-
ental problems [28,29]. They noticed a root mean square error

RMSE) of 0.7 log units in the predicted log KOW and RMSE of 1.8 log
nits in the predicted log KAW. Wittekindt and Goss explained such

 high variation of log KAW by the fact that EPI Suite predictions,
rom definition, were based on the two-dimensional representa-
ion of the molecular structure, whereas COSMOtherm accounts
lso information of the three-dimensional structure and stereo-
hemistry. More recently, Zhang et al. [30] performed an extensive
omparison of the partitioning properties of 529 chemicals, derived
ith four prediction methods: EPI Suite, COSMOtherm,  SPARC, and
BSOLV. SPARC is a freely available online phys/chem calculator

http://ibmlc2.chem.uga.edu/sparc/) hosted by the University of
eorgia and, it seems, currently competing with EPI Suite [31,32].
he ABSOLV module is a part of ADMEBoxes package designed
y Pharma Algorithms, Inc. that calculates solute descriptors (so-
alled Abraham descriptors). The descriptors can be then utilized
o develop poly-parameter free energy relationships (pp-LFER) for
redicting log KOW, log KAW and log KOA [33]. The authors used the
our sets of predictions to screen the chemicals against various LRTP
nd B criteria. As they concluded, screening results were the same
or only about 70% of 529 compounds.

However, no one should expect exactly the same results

rovided by different computational methods, developed from dif-
erent assumptions and schemes. Even experimental data could
e seriously biased because of many reasons [34] and one should
emember that the computational models are usually calibrated on
1 p = 0.3604 p = 0.1797

these biased data. Moreover, the predicted data, from definition,
will always contain additional noise originated from mathematical
methods of interpolation (e.g., the least squares method) employed
for development of any QSPR.

On one hand, as we demonstrated, the differences either
between the phys/chem data predicted with QSPRs and the exper-
imental values itself or between the outputs from multimedia
models (POV, CTD, and TE) utilizing those QSPR data and the out-
puts from the models utilizing only experimentally determined
phys/chem data were not statistically significant. On  the other
hand, those ‘insignificant’ differences influenced rankings of the
compounds according to: POV, CTD and TE. Hence, should we trust
in the results when the empirical data are replaced with computa-
tionally predicted ones or not?

Both, the exercises performed by the cited authors [27,30] and
our study demonstrated significant weakness of the assumptions
currently used in the risk assessment for POPs and, more gen-
erally, for all PBT substances. First, whenever the substances are
ranked along with a given property (i.e., P, B, T or LRTP), and the
substances are of similar structure (i.e., congeners), it is highly
probable than the randomly distributed error that is related to mea-
suring/calculating of this property would have a strong impact on
the ranking results. In such cases, we  would rather recommend
to employ classification or grouping techniques instate of simple
rankings. Second, several screening procedures are based on sin-
gle thresholds criteria. For instance, according to regulations of the
Stockholm Convention on POPs [35], chemicals with log KOW > 5 are
regarded as bioaccumulative. As shown, the measured/predicted
values of the partition coefficient can vary dependently on the
applied method, and the standard variation can be equal to 0.7 log
unit or even more. Thus, evidently, classifying compounds with val-
ues of log KOW very close to 5 as bioaccumulative ones or not is
somewhat of a lottery. To solve this problem, as Zhang et al. [30]
pointed out, screening approaches should be based on quantify-
ing numerical hazard estimates that take the uncertainty of the
predicted properties into account. In addition, we would suggest
deriving novel criteria with use of the fuzzy set theory [36,37], in
which a compound is classified as – for instance – bioaccumulative
with a given probability (e.g., bioaccumulative with probability of
80%, not bioaccumulative with probability of 20%).

The concept of fuzzy classification can be illustrated by a sim-
ple example. As mentioned, all chemicals passing the threshold of
log KOW = 5 are labeled as bioaccumulative [35]. According to this
criterion, a compound having log KOW = 8 must, without doubts,
be bioaccumulated easily. However, when the log KOW value of
a chemical is very close to the threshold (for instance when

log KOW = 4.5), the classification becomes more uncertain. How to
assess probability of passing the threshold in this case?

Let us assume that the residuals in the validation set of the
QSPR model for log KOW applied in this study [13] are normally

http://ibmlc2.chem.uga.edu/sparc/
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Fig. 4. Probability density plot that illustrates the way  of calculating probability that
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he value A of log KOW predicted with QSPR model passes the threshold T. The values
f  log KOW are provided with use of the original scale (x) and after standardization
z),  according to Eq. (8).

istributed around the zero value. Such type of dispersal proves
he random distribution of errors, and that condition should be ful-
lled for any regression model. Moreover, it is better to analyze the
rrors within the external validation set to avoid overoptimistic
onclusions, in case they base only on the compounds utilized for
alibrating the model (training set). Then, of course, we  can calcu-
ate the standard deviation of residuals (sE = 0.30) that characterizes
he distribution.

In the next step, we can simulate probability of obtaining the
alues of log KOW that differ from that of 4.50 by 1, 2 and 3 standard
eviations sE (Fig. 4). Finally, based on the tabularized values of
he probability density function and of the cumulative distribution
unction for the standardized normal distribution, we are able to
alculate probability of passing the threshold. The calculations are
s follows:

) Both the predicted value of log KOW = 4.50 (here denoted as A)
and the value of the log KOW threshold = 5.00 (here denoted as
T) should be standardized first according to (8):

z = x  − A

sE
= x  − 4.50

0.30
(8)

The standardized value of A = 0 (expressed in z-scale). The
standardized value of the threshold T = 1.67, which means that
T differs from A by 1.67 standard deviations (sE).

) Directly from the probability density function (Fig. 4), we  can
derive probability that A = T (9):

P(A = T) = 1√
2�

exp

(
−T2

2

)
= 0.0989 (9)

) From definition, probability that A ≤ T is equal to the value of
the cumulative distribution function, which is the integral from
minus infinity to T (10):

P(A ≤ T) =
∫ T

−∞

1√
2�

exp

(
− z2

2

)
dz = 0.9525 (10)

) Therefore, probability that A ≥ T can be calculated as (11):

P(A ≥ T) = P(A > T) + P(A = T) = 1 − P(A ≤ T) + P(A = T)

= 1 − 0.9525 + 0.0989 = 0.1464 (11)
Finally, we can provide the result in a way  of the fuzzy
et theory, concluding that the compound, for which predicted
terials 192 (2011) 970– 977

log KOW = 4.50 is bioaccumulative with probability of 85% and non-
bioaccumulative with probability of 15%.

5. Conclusions

In this contribution, we  tried to answer the question: How the
origin of the physicochemical properties influences the results of
multimedia mass balance modeling? We demonstrated that the
replacement of the empirical data with the QSPR-predicted ones
did not significantly decrease the performance of The Tool multime-
dia model. We  are conscious our study was performed on only one
multimedia model (The Tool) with a limited number of compounds.
However, since it was  possible to successfully substitute the empir-
ical data with the QSPR-predicted ones in one case, it would be also
possible to do the same in case of other models. Thus, we  strongly
recommend revising the OECD recommendations that give the
highest priority to the application of purely empirical data in envi-
ronmental mass balance modeling. Moreover, regarding that data
of both types (empirical and predicted) are always determined with
uncertainty, we suggest to modify the screening approaches imple-
mented in majority of international regulations. The approaches
based on single thresholds might be changed for those taking into
account uncertainty of a given property and/or enabling to express
probability that the substance passed the threshold or not. The last
condition could be fulfilled by employing the fuzzy sets theory.
Our observations and proposals in that matter are consistent with
previously published works.
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